12239 measured reflections

 $R_{\rm int} = 0.036$

4173 independent reflections

3216 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*Z*)-2-Amino-3-[(*E*)-benzylideneamino]but-2-enedinitrile

G. Varsha, V. Arun, Manju Sebastian, P. Leeju, Digna Varghese and K. K. M. Yusuff*

Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, Kerala, India Correspondence e-mail: yusuff@cusat.ac.in

Received 17 March 2009; accepted 24 March 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.106; wR factor = 0.214; data-to-parameter ratio = 15.3.

The asymmetric unit of the title compound, $C_{11}H_8N_4$, contains two independent molecules. In the crystal structure, intermolecular N-H···N hydrogen bonds link molecules into ribbons extended in the [100] direction.

Related literature

For some properties of Schiff base ligands, see: Arun, Robinson *et al.* (2009); Arun, Sridevi *et al.* (2009). For related structures, see: MacLachlan *et al.* (1996); Mague & Eduok (2000); Varghese *et al.* (2009).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_{11}H_8N_4} \\ M_r = 196.21 \\ {\rm Monoclinic, \ } P2_1/c \\ a = 6.9569 \ (19) \ {\rm \AA} \\ b = 22.796 \ (6) \ {\rm \AA} \\ c = 13.516 \ (4) \ {\rm \AA} \\ \beta = 100.983 \ (5)^\circ \end{array}$

V = 2104.2 (10) Å³ Z = 8 Mo Kα radiation radiation μ = 0.08 mm⁻¹ T = 298 K 0.42 × 0.18 × 0.18 mm

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{min} = 0.980, T_{max} = 0.984$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.106$	272 parameters
$wR(F^2) = 0.214$	H-atom parameters constrained
S = 1.29	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
4173 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Η	yd	lrogen-	bond	geometry	(4	۹, ۹	')	1.
---	----	---------	------	----------	----	------	----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots N3^{i}$	0.86	2.36	3.096 (4)	144
$N2 - H2B \cdot \cdot \cdot N8^{ii}$	0.86	2.25	3.090 (5)	165
N6−H6A…N7 ⁱⁱⁱ	0.86	2.51	3.228 (5)	142
$N6-H6B\cdots N4^{iv}$	0.86	2.28	3.057 (4)	150

Symmetry codes: (i) x - 1, y, z; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) x + 1, y, z; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The X-ray data were collected on the diffractometer facilities at the University of Hyderabad provided by the Department of Science and Technology. MS thanks KSCSTE, Trivandrum, Kerala, for financial assistance. DV gratefully acknowledges financial support from the Council of Scientific and Industrial Research (CSIR), India.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2533).

References

Arun, V., Robinson, P. P., Manju, S., Leeju, P., Varsha, G., Digna, V. & Yusuff, K. K. M. (2009). *Dyes Pigments*. In the press. doi:10.1016/ j.dyepig.2009.01.010

Arun, V., Sridevi, N., Robinson, P. P., Manju, S. & Yusuff, K. K. M. (2009). J. Mol. Catal. A Chem. In the press. doi:10.1016/j.molcata.2009.02.011

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- MacLachlan, M. J., Park, M. K. & Thomas, L. K. (1996). Inorg. Chem. 35, 5492–5499.
- Mague, J. T. & Eduok, E. E. (2000). J. Chem. Crystallogr. 30, 311-320.

Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Varghese, D., Arun, V., Sebastian, M., Leeju, P., Varsha, G. & Yusuff, K. K. M. (2009). Acta Cryst. E65, 0435.

supplementary materials

Acta Cryst. (2009). E65, o919 [doi:10.1107/S1600536809010873]

(Z)-2-Amino-3-[(E)-benzylideneamino]but-2-enedinitrile

G. Varsha, V. Arun, M. Sebastian, P. Leeju, D. Varghese and K. K. M. Yusuff

Comment

In continuation of our study of Schiff base ligands and their metal complexes (Arun, Robinson *et al.*, 2009; Arun, Sridevi *et al.*, 2009; Varghese *et al.*, 2009), we present here the title compound, (I).

The asymmetric unit of (I) contains two independent molecules (Fig. 1). All bond lengths and angles in (I) are normal and correspond to those observed in the related compounds (MacLachlan *et al.*, 1996; Mague & Eduok 2000). In both independent molecules, the benzene ring and diaminomaleonitrile moiety are anti with respect to azomethine C=N. In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 1) link the molecules into ribbons extended in direction [100].

Experimental

Benzaldehyde (Merck) and 2,3-diaminomaleonitrile (Aldrich) are of reagent grade and are used without further purification. A hot solution of 2,3-diaminomaleonitrile (1 mmol) in methanol (25 ml) was added slowly over a hot solution of benzaldehyde (1 mmol) in the same solvent (25 ml) and the solution was refluxed for three hours. The resulting yellow solution was cooled in ice and the precipitated imine was filtered off and washed with cold methanol and dried under vacuum. Yellow crystals of (1) suitable for X-ray analysis were obtained by slow evaporation of the Schiff base in absolute ethanol (yield 85%; m.p. 463 K).

Refinement

H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and refined in riding mode, with U_{iso} (H) = 1.2Ueq(C, N).

Figures

Fig. 1. Two independent molecules of (I) with the atomic labelling scheme and 50% probability displacement ellipsoids.

(Z)-2-Amino-3-[(E)-benzylideneamino]but-2-enedinitrile

Crystal data

$C_{11}H_8N_4$	$F_{000} = 816$
$M_r = 196.21$	$D_{\rm x} = 1.239 {\rm Mg m}^{-3}$

Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.9569 (19) Åb = 22.796 (6) Åc = 13.516 (4) Å $\beta = 100.983 (5)^{\circ}$ $V = 2104.2 (10) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer	4173 independent reflections
Radiation source: fine-focus sealed tube	3216 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 298 K	$\theta_{\text{max}} = 26.1^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -8 \rightarrow 8$
$T_{\min} = 0.980, \ T_{\max} = 0.984$	$k = -28 \rightarrow 23$
12239 measured reflections	$l = -16 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.106$	$w = 1/[\sigma^2(F_o^2) + (0.0476P)^2 + 1.6604P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.214$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.29	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
4173 reflections	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
272 parameters	Extinction correction: SHELXTL (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0021 (6)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mo Kα radiation radiation

Cell parameters from 4803 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.4 - 26.1^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 298 K

Rod, yellow

 $0.42\times0.18\times0.18~mm$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.3264 (5)	0.39467 (14)	0.3626 (2)	0.0398 (8)
C2	0.3971 (6)	0.34110 (16)	0.3379 (3)	0.0590 (11)
H2	0.5196	0.3387	0.3202	0.071*
C3	0.2851 (8)	0.29092 (19)	0.3397 (4)	0.0772 (14)
H3	0.3324	0.2548	0.3229	0.093*
C4	0.1054 (8)	0.2944 (2)	0.3661 (4)	0.0792 (15)
H4	0.0313	0.2606	0.3677	0.095*
C5	0.0339 (6)	0.3473 (2)	0.3902 (3)	0.0673 (12)
Н5	-0.0887	0.3494	0.4078	0.081*
C6	0.1427 (5)	0.39773 (17)	0.3883 (3)	0.0501 (9)
Н6	0.0933	0.4337	0.4043	0.060*
C7	0.4454 (5)	0.44731 (14)	0.3591 (3)	0.0388 (8)
H7	0.5684	0.4436	0.3422	0.047*
C8	0.5013 (4)	0.54703 (14)	0.3760 (2)	0.0366 (8)
С9	0.4227 (5)	0.60037 (14)	0.3899 (3)	0.0397 (8)
C10	0.6996 (5)	0.54341 (15)	0.3605 (3)	0.0469 (9)
C11	0.5356 (5)	0.65316 (15)	0.3859 (3)	0.0459 (9)
N1	0.3855 (4)	0.49769 (11)	0.3784 (2)	0.0367 (7)
N2	0.2412 (4)	0.60811 (13)	0.4084 (2)	0.0558 (9)
H2A	0.1673	0.5783	0.4122	0.067*
H2B	0.1991	0.6429	0.4165	0.067*
N3	0.8559 (5)	0.53781 (16)	0.3485 (3)	0.0764 (12)
N4	0.6208 (5)	0.69534 (14)	0.3808 (3)	0.0693 (11)
C12	0.2008 (5)	0.53605 (15)	0.1295 (3)	0.0452 (9)
C13	0.3849 (5)	0.53053 (17)	0.1052 (3)	0.0550 (10)
H13	0.4312	0.4934	0.0933	0.066*
C14	0.4994 (7)	0.5783 (2)	0.0985 (4)	0.0736 (13)
H14	0.6224	0.5739	0.0819	0.088*
C15	0.4310 (8)	0.6331 (2)	0.1165 (4)	0.0823 (16)
H15	0.5078	0.6659	0.1109	0.099*
C16	0.2515 (9)	0.64021 (18)	0.1425 (4)	0.0821 (16)
H16	0.2090	0.6775	0.1562	0.098*
C17	0.1334 (7)	0.59197 (17)	0.1484 (3)	0.0639 (12)
H17	0.0104	0.5967	0.1648	0.077*
C18	0.0775 (5)	0.48496 (15)	0.1349 (3)	0.0450 (9)
H18	-0.0432	0.4899	0.1538	0.054*
C19	0.0133 (4)	0.38528 (14)	0.1179 (3)	0.0379 (8)
C20	0.0863 (5)	0.33203 (15)	0.0987 (3)	0.0416 (8)
C21	-0.1801 (5)	0.38947 (15)	0.1396 (3)	0.0450 (9)
C22	-0.0336 (6)	0.28020 (17)	0.0983 (3)	0.0540 (10)
N5	0.1316 (4)	0.43361 (12)	0.1143 (2)	0.0396 (7)
N6	0.2648 (4)	0.32364 (12)	0.0767 (2)	0.0555 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

supplementary materials

H6A H6B N7 N8	0.3410 0.3028 -0.3334 (4) -0.1258 (5)	0.3531 0.2888 0.39419 (15 0.23914 (15)	0.0741 0.0652 0.1568 (: 0.0977 (:	3) 3)	0.067 ³ 0.067 ³ 0.0660 0.0809	* * 0 (10) 9 (13)	
Atomic displacen	nent parameters ((A^2)						
	U^{11}	U^{22}	U^{33}		U^{12}		U^{13}	U^{23}
C1	0.0501 (19)	0.0328 (18)	0.0338 (1	19)	-0.0032 (15)	0.0015 (15)	0.0035 (15)
C2	0.070 (3)	0.036 (2)	0.069 (3))	0.0021 (19)	·	0.007 (2)	0.002 (2)
C3	0.112 (4)	0.035 (2)	0.079 (3))	-0.002(3)		0.006 (3)	0.005 (2)
C4	0.110 (4)	0.053 (3)	0.070 (3))	-0.038(3)		0.006 (3)	0.010 (2)
C5	0.067 (3)	0.069 (3)	0.064 (3))	-0.026 (2)		0.009 (2)	0.003 (2)
C6	0.056 (2)	0.042 (2)	0.052 (2))	-0.0072 (17)	0.0069 (18)	0.0007 (18)
C7	0.0369 (17)	0.0353 (19)	0.045 (2))	0.0016 (14)	, 	0.0104 (15)	-0.0001 (15)
C8	0.0334 (16)	0.0365 (19)	0.0387 (1	19)	-0.0038 (14)	0.0042 (14)	-0.0004 (15)
С9	0.0413 (18)	0.0328 (18)	0.044 (2))	-0.0093 (15)	0.0064 (15)	0.0002 (16)
C10	0.044 (2)	0.039 (2)	0.059 (2))	-0.0075 (16)	0.0116 (17)	-0.0016 (17)
C11	0.051 (2)	0.034 (2)	0.050 (2))	-0.0021 (17)	0.0028 (17)	0.0064 (17)
N1	0.0324 (13)	0.0315 (15)	0.0451 (1	17)	-0.0031 (12)	0.0045 (12)	0.0013 (13)
N2	0.0506 (17)	0.0364 (17)	0.085 (3))	-0.0009 (14)	0.0238 (17)	-0.0085 (16)
N3	0.0413 (18)	0.066 (2)	0.127 (4))	-0.0080 (17)	0.030 (2)	-0.011 (2)
N4	0.078 (2)	0.038 (2)	0.089 (3))	-0.0181 (18)	0.010 (2)	0.0034 (18)
C12	0.057 (2)	0.0302 (19)	0.042 (2)		-0.0028 (16)	-0.0046 (17)	0.0012 (16)
C13	0.060 (2)	0.048 (2)	0.057 (3))	-0.0086 (19)	0.010 (2)	0.0004 (19)
C14	0.085 (3)	0.058 (3)	0.077 (3)		-0.026 (2)		0.013 (3)	-0.002 (2)
C15	0.109 (4)	0.060 (3)	0.070 (3))	-0.038 (3)		-0.005 (3)	0.007 (3)
C16	0.125 (4)	0.022 (2)	0.084 (4)		-0.002(3)		-0.018 (3)	0.002 (2)
C17	0.078 (3)	0.040 (2)	0.067 (3))	0.009 (2)		-0.006 (2)	-0.006 (2)
C18	0.0454 (19)	0.044 (2)	0.045 (2)		0.0033 (16)		0.0091 (16)	-0.0035 (17)
C19	0.0361 (16)	0.0337 (19)	0.043 (2)		-0.0032 (14)	0.0058 (15)	0.0029 (15)
C20	0.0466 (19)	0.0349 (19)	0.043 (2))	-0.0065 (15)	0.0083 (16)	-0.0014 (16)
C21	0.0450 (19)	0.038 (2)	0.051 (2))	-0.0029 (16)	0.0064 (17)	-0.0022 (17)
C22	0.054 (2)	0.041 (2)	0.070 (3)		-0.0045 (18)	0.017 (2)	-0.006 (2)
N5	0.0410 (15)	0.0309 (15)	0.0456 (1	17)	-0.0022 (12)	0.0050 (13)	-0.0021 (13)
N6	0.0520 (18)	0.0287 (16)	0.093 (3))	0.0009 (14)		0.0315 (18)	-0.0022 (16)
N7	0.0443 (18)	0.070 (2)	0.088 (3))	-0.0002 (17)	0.0241 (18)	0.002 (2)
N8	0.072 (2)	0.046 (2)	0.127 (4))	-0.0218 (19)	0.026 (2)	-0.005 (2)
Geometric paran	neters (Å, °)							
C1—C2		1.381 (5)		C12—C	13		1.387 ((5)
C1—C6		1.389 (5)		C12—C	17		1.398 ((5)
C1—C7		1.464 (4)		C12—C	18		1.457 ((5)
C2—C3		1.387 (6)		C13—C	14		1.362 ((5)
С2—Н2		0.9300		С13—Н	13		0.9300	
C3—C4		1.365 (7)		C14—C	15		1.375 ((6)
С3—Н3		0.9300		С14—Н	14		0.9300	
C4—C5		1.369 (6)		С15—С	16		1.370 ((7)

C4—H4	0.9300	C15—H15	0.9300
C5—C6	1.378 (5)	C16—C17	1.384 (6)
С5—Н5	0.9300	C16—H16	0.9300
С6—Н6	0.9300	С17—Н17	0.9300
C7—N1	1.266 (4)	C18—N5	1.276 (4)
С7—Н7	0.9300	C18—H18	0.9300
C8—C9	1.360 (4)	C19—C20	1.360 (4)
C8—N1	1.387 (4)	C19—N5	1.382 (4)
C8—C10	1.437 (4)	C19—C21	1.434 (4)
C9—N2	1.345 (4)	C20—N6	1.344 (4)
C9—C11	1.443 (4)	C20—C22	1.446 (5)
C10—N3	1.136 (4)	C21—N7	1.139 (4)
C11—N4	1.138 (4)	C22—N8	1.134 (4)
N2—H2A	0.8600	N6—H6A	0.8600
N2—H2B	0.8600	N6—H6B	0.8600
C2—C1—C6	119.5 (3)	C13—C12—C17	118.9 (4)
C2—C1—C7	119.2 (3)	C13—C12—C18	121.2 (3)
C6—C1—C7	121.3 (3)	C17—C12—C18	119.9 (4)
C1—C2—C3	119.9 (4)	C14—C13—C12	121.4 (4)
C1—C2—H2	120.1	С14—С13—Н13	119.3
C3—C2—H2	120.1	С12—С13—Н13	119.3
C4—C3—C2	120.1 (4)	C13—C14—C15	119.2 (5)
C4—C3—H3	119.9	C13—C14—H14	120.4
С2—С3—Н3	119.9	C15—C14—H14	120.4
C3—C4—C5	120.3 (4)	C16—C15—C14	121.1 (4)
C3—C4—H4	119.8	C16—C15—H15	119.5
C5—C4—H4	119.8	C14—C15—H15	119.5
C4—C5—C6	120.3 (4)	C15—C16—C17	120.1 (4)
C4—C5—H5	119.8	C15—C16—H16	120.0
С6—С5—Н5	119.8	C17—C16—H16	120.0
C5—C6—C1	119.8 (4)	C16—C17—C12	119.4 (4)
С5—С6—Н6	120.1	С16—С17—Н17	120.3
С1—С6—Н6	120.1	С12—С17—Н17	120.3
N1—C7—C1	121.8 (3)	N5-C18-C12	121.4 (3)
N1—C7—H7	119.1	N5—C18—H18	119.3
С1—С7—Н7	119.1	C12—C18—H18	119.3
C9—C8—N1	118.1 (3)	C20—C19—N5	117.3 (3)
C9—C8—C10	119.6 (3)	C20—C19—C21	119.9 (3)
N1—C8—C10	122.3 (3)	N5-C19-C21	122.9 (3)
N2—C9—C8	124.0 (3)	N6—C20—C19	124.3 (3)
N2—C9—C11	115.7 (3)	N6-C20-C22	116.1 (3)
C8—C9—C11	120.3 (3)	C19—C20—C22	119.6 (3)
N3—C10—C8	176.8 (4)	N7—C21—C19	178.4 (4)
N4—C11—C9	178.2 (4)	N8—C22—C20	179.1 (4)
C7—N1—C8	121.0 (3)	C18—N5—C19	121.4 (3)
C9—N2—H2A	120.0	C20—N6—H6A	120.0
C9—N2—H2B	120.0	C20—N6—H6B	120.0
H2A—N2—H2B	120.0	H6A—N6—H6B	120.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H…A
N2—H2A···N3 ⁱ	0.86	2.36	3.096 (4)	144
N2—H2B···N8 ⁱⁱ	0.86	2.25	3.090 (5)	165
N6—H6A…N7 ⁱⁱⁱ	0.86	2.51	3.228 (5)	142
N6—H6B…N4 ^{iv}	0.86	2.28	3.057 (4)	150

Symmetry codes: (i) x-1, y, z; (ii) -x, y+1/2, -z+1/2; (iii) x+1, y, z; (iv) -x+1, y-1/2, -z+1/2.

